Step of Proof: member-zip
11,40
postcript
pdf
Inference at
*
2
I
of proof for Lemma
member-zip
:
1.
A
: Type
2.
B
: Type
3.
A
List
4.
u
:
A
5.
v
:
A
List
6.
ys
:(
B
List),
x
:
A
,
y
:
B
. (<
x
,
y
>
zip(
v
;
ys
))
{(
x
v
) & (
y
ys
)}
ys
:(
B
List),
x
:
A
,
y
:
B
. (<
x
,
y
>
zip([
u
/
v
];
ys
))
{(
x
[
u
/
v
]) & (
y
ys
)}
latex
by InductionOnList
latex
1
:
1:
7.
B
List
1:
x
:
A
,
y
:
B
. (<
x
,
y
>
zip([
u
/
v
];[]))
{(
x
[
u
/
v
]) & (
y
[])}
2
:
2:
7.
B
List
2:
8.
u1
:
B
2:
9.
v1
:
B
List
2:
10.
x
:
A
,
y
:
B
. (<
x
,
y
>
zip([
u
/
v
];
v1
))
{(
x
[
u
/
v
]) & (
y
v1
)}
2:
x
:
A
,
y
:
B
. (<
x
,
y
>
zip([
u
/
v
];[
u1
/
v1
]))
{(
x
[
u
/
v
]) & (
y
[
u1
/
v1
])}
.
Definitions
P
Q
,
{
T
}
,
P
&
Q
,
(
x
l
)
,
x
:
A
B
(
x
)
,
x
:
A
B
(
x
)
,
x
:
A
.
B
(
x
)
,
type
List
,
t
T
origin